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Graphic Primitives 
 
In order to produce graphical output on a device, the programming language in use has to provide accordant 
commands. The simplest graphical elements that can be created by these commands are called Graphic 
Primitives. Beside simple drawings, such fundamental elements can also be formatting commands and meta 
information. The most important commands are: 
 

in 2D:   - points, lines 
- polygons, circles, ellipses and other curves (can also be filled areas) 
- bitmap-operations 
- letters and symbols 

 
in 3D:   - triangles and higher polygons 

- free-form surfaces 
 

Further commands are needed in order to define the properties of the primitives, such as color, fill pattern, 
texture, material property or transparency. Mostly these commands cause the subsequent primitives to be 
drawn with the last defined properties. 
 

█ Line Algorithms 
 
Especially the drawing of straight lines on raster devices is a very important operation. The base method 
DDA (Digital Differential Analyzer) was cleverly refactored by Bresenham in a way that enables it to work 
only with integer operations, which made it faster and easier to implement in hardware. 
 
Notation: A line is specified in the form y = mx + b, 
where m is the slope of the line,  
and (0,b) is the intersection with the y-axis. 
  
m and b can be calculated from the line’s endpoints (x0,y0)  
and (xend,yend) by 
 
m = (yend - y0) / (xend - x0)                              b = y0 - mx0 
 
The simple DDA-Algorithm for |m| < 1 adds for each step to the right (x+=1) the value m to y0, and rounds 
the result to an integer afterwards. This results in a line, which creates exactly one pixel on the line for each 
x-value. 
 
dx = xEnd – x0; dy = yEnd – y0; 
m = dy / dx; 
 
x = x0;  y = y0; 
setPixel (round(x), round(y)); 
 
for (k = 0; k < dx; k++) 
  { x += 1; y += m; 
  setPixel (round(x), round(y)}  
 
For |m| > 1, x and y are swapped and the same procedure is executed in vertical direction. The following 
Bresenham-Algorithm will also only be explained for 0 < |m| < 1, all other directions work by mirroring and 
rotation by 90°. 
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The Bresenham-Algorithm creates exactly the same result as the simple DDA, but suffices using only 
integer arithmetic. Thus it is faster, easier to implement in firm- or hardware, and furthermore it can easily 
be adopted to fit other curves like circles, ellipses, spline curves and so on. 
 

For 0 < |m| < 1, from the known location of the pixel in the column 
xk the y-value of the pixel in the next column xk+1 is not being 
exactly calculated, but rather there’s made a decision, whether yk or 
yk+1 lies closer to the exact y-value. 
 

From y = mx + b follows the exact y-value for the column right to xk  

y = m.(xk + 1) + b 
  

The distance to yk is    dlower = y  yk = m(xk + 1) + b  yk 
The distance to yk+1 is  dupper = (yk + 1)  y = yk + 1  m(xk + 1)  b 
 

If the difference dlower  dupper = 2m.(xk + 1)  2yk + 2b  1 
is negative, then the lower point (xk+1,yk) is chosen. Otherwise, if the 
difference is positive, the upper point (xk+1,yk+1) is set. 
 

Substituting m = y/x ( x = xend – x0, y = yend – y0 ), and multiplying this difference with x results in a 

decision variable pk = x.(dlower  dupper) = 2y.xk  2x.yk + c , which has the same sign as dlower  dupper, 
but doesn’t need any division.  
 

Now, when the decision variable pk = 2y.xk  2x.yk + c for xk is known, the decision variable for xk+1 can 
easily be calculated:  

pk+1 = 2y.xk+1 x.yk+1  c + pk – 2y.xk + 2x.yk – c = pk + 2y x.(yk+1  yk) 
 

namely by just adding a number, which is constant for all points of the line.       p0 = 2y x 
 

With this the Bresenham-Algorithm roughly looks like this: 
1. store left line endpoint in (x0,y0) 

2. plot pixel (x0,y0)  

3. calculate constants x, y, 2y, 2y  2x, and obtain p0 = 2y  x 

4. At each xk along the line, perform test: 

5. if pk<0  

6. then plot pixel (xk+1,yk);  pk+1 = pk+ 2y 

7. else plot pixel (xk+1,yk+1);  pk+1= pk+ 2y  2x 

8. perform step 4 (x  times. 
 

Example:  
k pk (xk+1,yk+1) 

  (20,41) 
0 -4 (21,41) 
1  2 (22,42) 
2 -12 (23,42) 
3 -6 (24,42) 
4  0 (25,43) 
5 -14 (26,43) 
6 -8 (27,43) 
7 -2 (28,43) 
8  4 (29,44) 
9 -10 (30,44) 
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█ Filled Polygons 
 
When filling polygons you have to decide, what to fill at all. With simple closed curves, “inside” and 
“outside” can easily be defined. But what about more complicated curves? 
 

 
 
Odd-Even-Rule: When shooting an arbitrary half-ray originating in a given point, then the point lies inside, 
if the number of intersections of the ray with the curve is odd, otherwise the point lies outside (left picture). 
 

Nonzero-Winding-Number-Rule: Points lie outside, if an arbitrary half-ray intersects the same number of 
clockwise and counter-clockwise edges, otherwise they lie inside (center picture). 
 

All-In-Rule: Any point which is somehow surrounded by a closed subset of the curve’s edges lies inside. 
Rarely used, mostly when playing Poker (right picture). 
 
After deciding, which points are interpreted to be “inside”, filling can be performed by either filling line by 
line (Scanline-Algorithms), or originating from an inner point filling in all directions (Flood-Fill-
Algorithms). 
 
A polygon is called “convex”, if all inner angles are smaller than 180°, otherwise it’s called “concave”. 
Since convex polygons create much less special cases, most algorithms are only designed for convex 
polygons. Therefore, methods are needed to cut down concave polygons to a number of convex ones. 
 

█ Letters And Symbols 
 
Text is defined by fonts and properties. Fonts with serifs (upper example) are better 
suited for flow text, fonts without serifs are better suited for catchy, striking text. 
Additionally, font properties like italic/non-italic, normal/bold, underlined etc. are 
defined. A font’s shape is normally defined by the silhouette curves of its letters, in 
some applications also by a pixel raster graphic. 
 

█ Polygon Lists 
 
3-dimensional objects are mostly represented by polygon lists (in 
most cases triangles). A number of polygons, which together 
describe the surface of an object, is called Boundary Representation 
(„B-Rep“). Beside its geometric information, B-Rep data structures 
also contain attributes. The geometry consists of point lists, edge 
lists, surface lists and has to be verified for consistency and 
completeness. 
 
The following example shows for a simple object with two polygons, how point list (vertex table), edge list 
(edge table) and surface list (surface table) refer to each other. The geometry information itself is stored 
only in the point list, the other lists describe the topology of the object. 
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The same structure can be described by pointer lists: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The representation of each individual polygon surface includes the plane Ax + By + Cz + D = 0, in which it 
is embedded, and its corner points V1 to Vn. From the plane parameters A, B, C, D we retrieve the surface 
normal vector on the plane (A, B, C). The two sides of the polygon are defined as Backface, which is 
oriented towards the inside of the object, and Frontface, which is part of the outside form of the object. 
“Behind the polygon” lie all those points, which can be seen from its backface, “in front of the polygon” all 
those points from where one can directly see its front face. 
 
When assuming a right-handed coordinate system and arranging the vertices of each polygon (seen from its 
front side) in a mathematically positive sense (that is, counter-clockwise), then we can say for a point (x, y, 
z): 
 

if Ax + By + Cz + D = 0  then the point lies on the plane (intersects the plane) 
if Ax + By + Cz + D < 0  then the point lies behind the plane 
if Ax + By + Cz + D > 0  then the point lies in front of the plane 

 
Similarly, from a set of three consecutive vertices V1, V2, V3 we can calculate a normal vector N with the 
formula N= (V2  V1) x (V3  V1) which is oriented outwards. We will need these facts later on. 
 


